

, Ltd. Report No.: BCTC2008001665-2E

TEST REPORT

Product Name: Droid820Covid19

Trademark: N/A

Model Number: Droid820Covid19

Prepared For: AOK Displays Manufacturing Co., Ltd

Address: 6th floor, Sanding Commerce building, Yangmei, Bantian,

Longgang, Shenzhen, China

Manufacturer: AOK Displays Manufacturing Co., Ltd

Address: 6th floor, Sanding Commerce building, Yangmei, Bantian,

Longgang, Shenzhen, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

BCTC Building & 1-2F, East of B Building, Pengzhou Industrial,

Address: Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an

District, Shenzhen, China

Sample Received Date: Mar. 15, 2020

Sample tested Date: Mar. 15, 2020 to May 17, 2020

Issue Date: Aug. 19, 2020

Report No.: BCTC2008001665-2E

Test Standards ETSI EN 301 489-1 V2.2.3 (2019-11)

Draft ETSI EN 301 489-17 V3.2.2 (2019-12)

Test Results PASS

Remark: This is RED EMC test report.

All test data come from the report of No. BCTC2003001135-2E

Eric Yang

Compiled by: Reviewed by:

kelsey Ton

Kelsey Tan

d by: Approved by:

Zero Zhou/Manager

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

	Test I	Report Declaration	Page
	1.	VERSION	4
	2.	TEST SUMMARY	5
	3.	MEASUREMENT UNCERTAINTY	6
7	4.	PRODUCT INFORMATION AND TEST SETUP	7
	4.1	Product Information	7
	4.2	Test Setup Configuration	
	4.3	Support Equipment	8
	4.4	Test Mode	9
^	4.5	Test Environment	10
00	5.	TEST FACILITY AND TEST INSTRUMENT USED	11
	5.1	Test Facility	11
	5.2	Test Instrument Used	11
	6.	CONDUCTED EMISSIONS	14
	6.1	Block Diagram Of Test Setup	14
	6.2	Limit	14
	6.3	Test procedure	
	6.4	Test Result	16
	7.	RADIATED EMISSIONS TEST	
7	7.1	Block Diagram Of Test Setup	
	7.2	Limits	18
	7.3	Test Procedure	19
	7.4	Test Results	
	8.	HARMONIC CURRENT EMISSION(H)	22
0	8.1	Block Diagram of Test Setup	
00	8.2	Limit	22
_	8.3	Test Procedure	22
	8.4	Test Results	
	9.	VOLTAGE FLUCTUATIONS & FLICKER(F)	
	9.1	Block Diagram of Test Setup	23
0_	9.2	Limit	23
00	9.3	Test Procedure	23
		Test Results	23
	10.		
	11.		
	11.1		
	11.2	9	
	11.3		
		Test Results	
_		CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES(RS).	
3:	12.1	Test Specification	29

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC2008001665-2E

12.2	Block Diagram of Test Setup	29
12.3	-	
12.4		
13.	ELECTRICAL FAST TRANSIENTS/BURST (EFT)	. 31
13.1		
13.2	Block Diagram of EUT Test Setup	31
13.3	Test Procedure	31
13.4		32
14.	SURGES IMMUNITY TEST	. 33
14.1	Test Specification	33
14.2	Block Diagram of EUT Test Setup	33
14.3		
14.4		
15.	CONTINUOUS INDUCED RF DISTURBANCES (CS)	. 35
15.1		35
15.2	Block Diagram of EUT Test Setup	35
15.3	Test Procedure	35
15.4		
16.	VOLTAGE DIPS AND INTERRUPTIONS (DIPS)	. 37
16.1	Test Specification	37
16.2	3	37
16.3	Test Procedure	37
16.4		
17.	EUT PHOTOGRAPHS	. 39
18	FUT TEST SETUP PHOTOGRAPHS	50

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
BCTC2008001665-2E	Aug. 19, 2020	Original	Valid
	-/-		

2. TEST SUMMARY

The Product has been tested according to the following specifications:

EMISSION						
Standard Test Item						
EN 55032	Conducted emissions from the AC mains power ports	Pass				
EN 55032 Asymmetric mode conducted emissions		N/A ¹				
EN 55032	EN 55032 Conducted differential voltage emissions					
EN 55032	Radiated emissions	Pass				
EN 61000-3-2	Harmonic current emission(H)	N/A ³				
EN 61000-3-3	Voltage fluctuations & flicker(F)	Pass				

IMMUNITY					
Standard (EN 55035)	I AST ITAM				
IEC 61000-4-2	Electrostatic discharge (ESD)	Pass			
IEC 61000-4-3	Continuous RF electromagnetic field disturbances(RS)	Pass			
IEC 61000-4-4	Electrical fast transients/burst (EFT)	Pass			
IEC 61000-4-5	Surges	Pass			
IEC 61000-4-6	Radio frequency, common mode	Pass			
IEC 61000-4-11	Voltage dips and interruptions (DIPS)	Pass			

Remark:

- 1. The EUT is powered by the DC battery only and has no antenna port, the test item is not applicable.
- 2. The Product belongs to Class A, and its power is less than 75W, so it deems to fulfil this standard without testing.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150kHz-30MHz)	3.20
Radiated Emission(30MHz~1GHz)	4.80
Radiated Emission(1GHz~6GHz)	4.90

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): Droid820Covid19

Model Description: N/A
Hardware Version: N/A
Software Version: N/A

Operation Frequency: Bluetooth: 2402-2480MHz

WiFi: IEEE 802.11b/g/n 20: 2412-2472MHz

Max. RF output power: WiFi (2.4G): 11.30dBm

Bluetooth: 2.94 dBm

BLE:5.37 dBm

Type of Modulation: WiFi: DSSS, OFDM

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

BLE:GFSK

Antenna installation: Internal antenna

Antenna Gain: 1dBi

Ratings: AC230V/50Hz

Adapter: Model: GKYPB0300120CN

Input: 100-240V ~50/60Hz 1A Max

Output: 12V---3A

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.	Adapter	N/A	GKYPB030 0120CN	-	R-	DC12V

Notes

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Test Mode

WIFI LINK PING IP WIFI LINK PING IP WIFI LINK WIFI LINK	AC 230V/50Hz AC 230V/50Hz* AC 230V/50Hz AC 230V/50Hz* AC 230V/50Hz AC 230V/50Hz
WIFI LINK PING IP WIFI LINK	AC 230V/50Hz AC 230V/50Hz* AC 230V/50Hz
PING IP WIFI LINK	AC 230V/50Hz* AC 230V/50Hz
WIFI LINK	AC 230V/50Hz
WIFI LINK	AC 230V/50Hz
PING IP	AC 230V/50Hz
WIFI LINK	AC 230V/50Hz
WIFI LINK	AC 230V/50Hz
WIFI LINK	AC 230V/50Hz
PING IP	AC 230V/50Hz
90	00
WIFI LINK	AC 230V/50Hz
PING IP	AC 230V/50Hz
WIFI LINK	AC 230V/50Hz
PING IP	AC 230V/50Hz
	WIFI LINK WIFI LINK WIFI LINK PING IP WIFI LINK PING IP WIFI LINK

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC2008001665-2E

4.5 Test Environment

Temperature:	26
Humidity:	54
Atmospheric Pressure:	101kPa

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

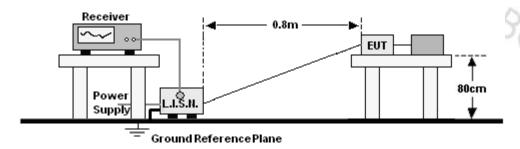
Conducted emissions Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Receiver	R&S	ESR3	102075	Jun. 13, 2019	Jun. 12, 2020	
LISN	R&S	ENV216	101375	Jun. 13, 2019	Jun. 12, 2020	
ISN	HPX	ISN T800	S1509001	Jun. 13, 2019	Jun. 12, 2020	
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\	

1 2 000		1300		1 1 1	
Radiated emissions Test (966 chamber)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	Jun. 19. 2018	Jun. 18, 2023
Receiver	R&S	ESR3	102075	Jun. 13, 2019	Jun. 12, 2020
Receiver	R&S	ESRP	101154	Jun. 13, 2019	Jun. 12, 2020
Amplifier	Schwarzbeck	BBV9718	9718-309	Jun. 25, 2019	Jun. 24, 2020
Amplifier	Schwarzbeck	BBV9744	9744-0037	Jun. 25, 2019	Jun. 24, 2020
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163- 942	Jun. 22, 2019	Jun. 21, 2020
Horn Antenna	SCHWARZBE CK	BBHA9120 D	1201	Jun. 22, 2019	Jun. 21, 2020
Software	Frad	EZ-EMC	FA-03A2 RE	1	\

Harmonic / Flicker Test Equipment Model# **Nanufacturer** Serial# Last Cal. Next Cal. Harmonic & LAPLAEC AC2000A 439263 Jun. 13, 2019 Jun. 12, 2020 Flicker Tester **AC Power** PCR4000 **LAPLAEC** Jun. 13, 2019 Jun. 12, 2020 631589 Supply M FA-03A2 **EZ-EMC** Software Frad \ RE

Electrostatic discharge Test						
Equipment Manufacturer Model# Serial# Last Cal. Next Ca					Next Cal.	
ESD Tester	KIKISUI	KES4201A	UH002321	Jul. 12, 2019	Jul. 10, 2020	

			Theat		
	Continuous RI	F electromag	netic field dis	turbances Tes	t
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power meter	Keysight	E4419B	GB4242144 0	Jun. 17, 2019	Jun. 16, 2020
Power sensor	Keysight	E9300A	US3921130 5	Jun. 17, 2019	Jun. 16, 2020
Power sensor	Keysight	E9300A	US3921165 9	Jun. 17, 2019	Jun. 16, 2020
Amplifier	SKET	HAP-8010 00M-250W		Jun. 25, 2019	Jun. 24, 2020
Amplifier	SKET	HAP-8010 00M-75W	\	Jun. 25, 2019	Jun. 24, 2020
Amplifier	SKET	HAP-8010 00M-50W	\Q	Jun. 25, 2019	Jun. 24, 2020
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	077	701	\
Field Probe	Narda	EP-601	80256	Jul. 07, 2019	Jul. 06, 2020
Signal Generator	Aglilent	N5181A	MY5014374 8	Jun. 13, 2019	Jun. 12, 2020
Software	SKET	EMC-S	1.2.0.18	(01	1


EFT and Surge and Voltage dips and interruptions Test Manufacturer Model# Serial# Last Cal. **Equipment** Next Cal. Compact **TRANSIENT** TRA2000 646 Jun. 14, 2019 Jun. 13, 2020 Generator CN-EFT100 Coupling CN-EFT100 **PARTNER** Jun. 27, 2019 Jun. 26, 2020 Clamp 0-1624

	V				\			
Continuous induced RF disturbances Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
C/S Test System	SCHLODER	CDG-600 0-75	126B1405/ 2016	Jun. 13, 2019	Jun. 12, 2020			
Attenuator	SCHLODER	6DB DC-1G	HA1630	Jun. 13, 2019	Jun. 12, 2020			
CDN	SCHLODER	CDN M2/M3	A2210389/ 2016	Jun. 13, 2019	Jun. 12, 2020			
Injection Clamp	SCHLOBER	EMCL-20	132A1272/ 2016	Jun. 13, 2019	Jun. 12, 2020			
Software	HUBERT	HUBERT EN 61000-4-6	1.4.1.0	\	\			

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

6.2 Limit

Limits for Conducted emissions at the mains ports of Class B MME

Frequency range	Limits dB(μV	
(MHz)	Quasi-peak	Average
0,15 to 0,50	66 to 56*	56 to 46*
0,50 to 5	56	46
5 to 30	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

Limits for asymmetric mode conducted emissions of Class B MME

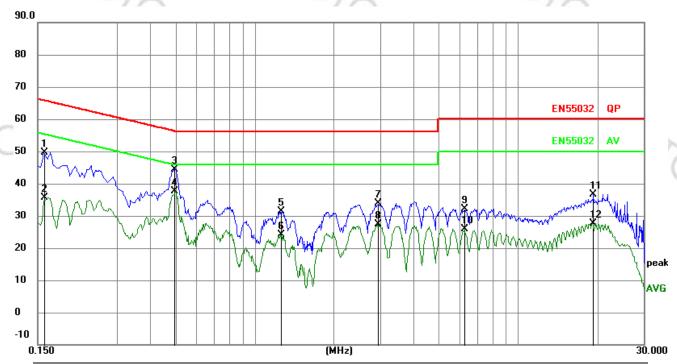
Frequency range	Voltage Limits dB(µV)		Current Limits dB(µA)		
(MHz)	Quasi-pea	Average	Quasi-pea	Average	
0,15 to 0,50	84-74	74-64	40-30	30-20	
0,50 to 30	74	64	30	20	

Notes: *Decreasing linearly with logarithm of frequency.

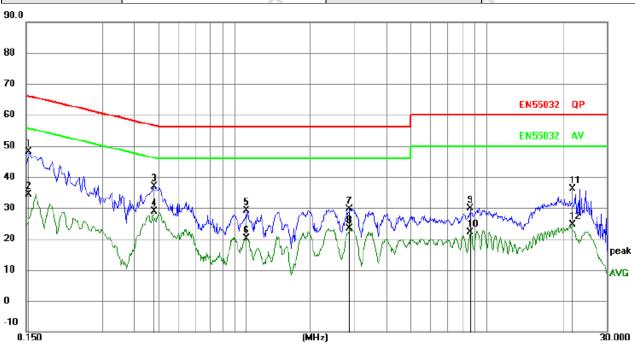
6.3 Test procedure

For mains ports:

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).



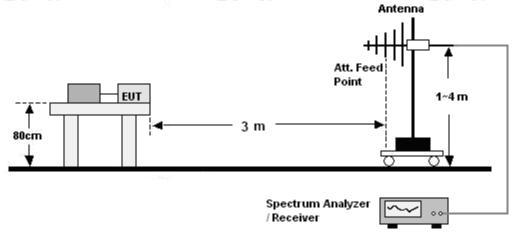
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

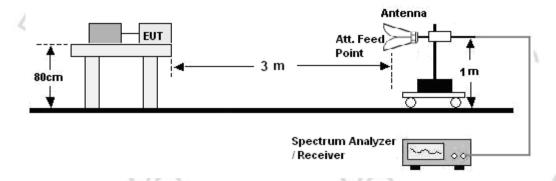

6.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	b)
Test Mode	PING IP	Remark:	N/A

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		-
		MHz		dB	dBuV	dBuV	dB	Detector	-
1		0.1590	40.15	9.51	49.66	65.52	-15.86	QP	٦
2		0.1590	26.19	9.51	35.70	55.52	-19.82	AVG	'n
3		0.4965	34.80	9.59	44.39	56.06	-11.67	QP	-
4	*	0.4965	28.01	9.59	37.60	46.06	-8.46	AVG	-
5		1.2570	21.73	9.58	31.31	56.00	-24.69	QP	
6		1.2570	14.57	9.58	24.15	46.00	-21.85	AVG	7
7		2.9355	24.17	9.66	33.83	56.00	-22.17	QP	Ì
8		2.9355	17.78	9.66	27.44	46.00	-18.56	AVG	-
9		6.2565	22.29	9.75	32.04	60.00	-27.96	QP	-
10		6.2565	16.24	9.75	25.99	50.00	-24.01	AVG	-
11		19.1490	26.82	9.77	36.59	60.00	-23.41	QP	-
12		19.1490	17.90	9.77	27.67	50.00	-22.33	AVG	-

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	N
Test Mode	PING IP	Remark:	N/A


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz		dB	dBuV	dBu∨	dB	Detector
_	1		0.1539	38.53	9.52	48.05	65.79	-17.74	QP
_	2		0.1539	24.77	9.52	34.29	55.79	-21.50	AVG
7	3		0.4812	27.36	9.57	36.93	56.32	-19.39	QP
	4	*	0.4812	19.26	9.57	28.83	46.32	-17.49	AVG
_	5		1.1173	19.60	9.57	29.17	56.00	-26.83	QP
_	6		1.1173	10.46	9.57	20.03	46.00	-25.97	AVG
3	7		2.8692	19.95	9.65	29.60	56.00	-26.40	QP
	8		2.8692	13.76	9.65	23.41	46.00	-22.59	AVG
	9		8.6373	20.12	9.70	29.82	60.00	-30.18	QP
_	10		8.6373	12.47	9.70	22.17	50.00	-27.83	AVG
_	11		21.8303	26.33	9.77	36.10	60.00	-23.90	QP
_	12		21.8303	14.97	9.77	24.74	50.00	-25.26	AVG


7. RADIATED EMISSIONS TEST

7.1 Block Diagram Of Test Setup

30MHz ~ 1GHz:

Above 1GHz:

7.2 Limits

Limits for radiated disturbance of Class B MME

Frequency (MHz)	Quasi-peak limits at 3m dB(μV/m)		
30-230	40		
230-1000	47		
Frequency (GHz)	limit above 1G at 3m dB(μV/m)		
	Average	peak	
1-3	50	70	
3-6	54	74	

Note: The lower limit shall apply at the transition frequencies.

7.3 Test Procedure

30MHz ~ 1GHz:

- a. The Product was placed on the nonconductive turntable 0.8m above the ground in a semi anechoic chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8 m above the ground in a full anechoic chamber..
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

7.4 Test Results

Below 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Horizontal
Test Mode	PING IP	Remark:	N/A

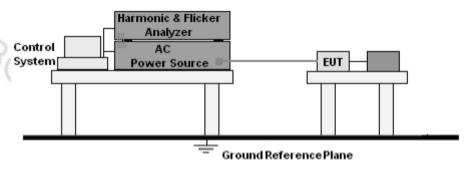
No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		83.8156	38.74	-14.05	24.69	40.00	-15.31	QP
2		225.3078	43.25	-10.43	32.82	40.00	-7.18	QP
3		263.8190	42.68	-8.83	33.85	47.00	-13.15	QP
4		359.1859	39.92	-6.17	33.75	47.00	-13.25	QP
5	*	455.9057	44.00	-2.94	41.06	47.00	-5.94	QP
6		480.5276	41.88	-2.42	39.46	47.00	-7.54	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Mode	PING IP	Remark:	N/A

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	33.7986	43.98	-9.39	34.59	40.00	-5.41	QP
2		59.8588	45.15	-11.76	33.39	40.00	-6.61	QP
3		84.1099	46.72	-14.04	32.68	40.00	-7.32	QP
4		115.7256	43.25	-11.95	31.30	40.00	-8.70	QP
5	*	209.3129	47.29	-11.42	35.87	40.00	-4.13	QP
6	İ	455.9057	44.33	-2.94	41.39	47.00	-5.61	QP

Remark.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.


Above 1GHz

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. HARMONIC CURRENT EMISSION(H)

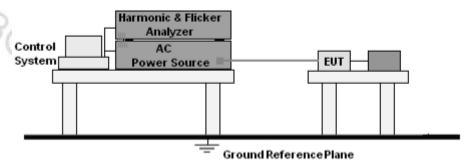
8.1 Block Diagram of Test Setup

8.2 Limit

EN 61000-3-2:2014 Clause 7.

8.3 Test Procedure

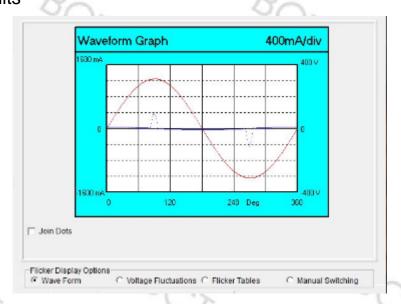
- a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from Product was chosen. The measure time shall be not less than the time necessary for the Product to be exercised.


8.4 Test Results

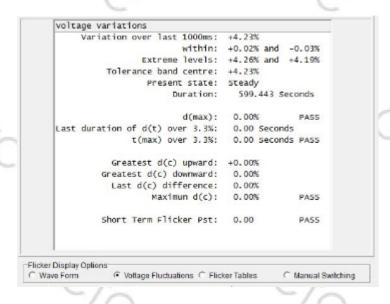
The Product belongs to Class A, and its power is less than 75W, so it deems to fulfil this standard without testing.

9. VOLTAGE FLUCTUATIONS & FLICKER(F)

9.1 Block Diagram of Test Setup


9.2 Limit

EN 61000-3-3:2013 Clause 5.


9.3 Test Procedure

- a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick test, the measure time shall include that part of whole operation cycle in which the Product produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

9.4 Test Results

Flicker Mete								
Pst Clas		Plt Calculation						
Duration	Flicker	Interval Psi						
0.7%	0.00							
1.0%	0.00							
1.5%	0.00							
2.2%	0.00							
3%	0.00							
4%	0.00							
6%	0.00							
8%	0.00							
10%	0.00							
13%	0.00							
17%	0.00							
30%	0.00							
50%	0.00							
80%	0.00							
Peak pu 0.	.00							
icker Display Options								
Wave Form	 Voltage Fluctuat 	ons @ Flicker Tables	C Manual Switching					

10. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA

According To EN 301489 -17standard, The General Performance Criteria As Following:

occiding to E	in oo i loo i i olaliaala, i lo ooliolali	onomiano ontona 7 on onowing.
Criteria	During the test	After the test
A	Shall operate as intended May show degradation of performance (see note 1) Shall be no loss of function Shall be no unintentional transmissions	Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions
c Bo	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: no degradation of performance after the test is understood as any degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Co., Ltd. Report No.: BCTC2008001665-2E

PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

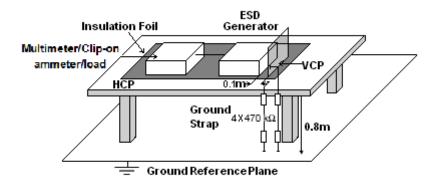
The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.


11. ELECTROSTATIC DISCHARGE (ESD)

11.1 Test Specification

Test Port : Enclosure port
Discharge Impedance : 330 ohm / 150 pF
Discharge Mode : Single Discharge

Discharge Period : one second between each discharge

11.2 Block Diagram of Test Setup

11.3 Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

.

11.4 Test Results

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Test Mode :	WIFI LINK/PING IP

	Mode		1				arge ult))			Со				cha ult)	rge				
	Test level (kV)	2	2	2	1	8	3	1	5	2	2	4	1	6	6	8	3	Observ ation	Perform Criteria	Judg ment
	Test Location	+		+	1	+		+	1	+	1	+	ı	+	ı	+	1			
-[HCP					/	-/		1	Α	Α	Α	Α)		CT,CR	В	PASS
	VCP							1		Α	Α	Α	Α					CT,CR	В	PASS
	USB Port									Α	Α	Α	Α					CT,CR	В	PASS
	enclosure									Α	Α	Α	Α					CT,CR	В	PASS
	Connectio n port	Α	Α	Α	Α	Α	Α											CT,CR	В	PASS

Note:

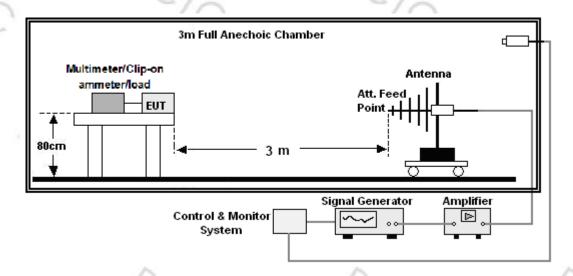
- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) Test condition: Direct / Indirect (HCP/VCP) discharges: Minimum 50 times (Positive/Negative) at each point. Air discharges: Minimum 10 times (Positive/Negative) at each point.
- 3) N/A denotes test is not applicable in this test report
- 4) There was not any unintentional transmission in standby mode

12. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES(RS)

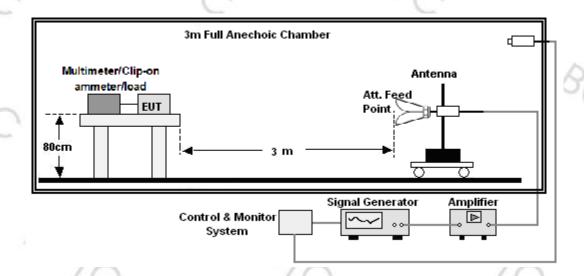
12.1 Test Specification

Test Port : Enclosure port

Step Size : 1%


Modulation : 1kHz, 80% AM

Dwell Time : 1 second


Polarization : Horizontal & Vertical

12.2 Block Diagram of Test Setup

Below 1GHz:

Above 1GHz:

12.3 Test Procedure

- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.
- b. The frequency range is swept from 80MHz to 6000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1%.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond, but should not exceed 5 s at each of the frequencies during the scan.
- d. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.
- e. For Broadcast reception function: Group 2 not apply in this test.

12.4 Test Results

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Test Mode:	WIFI LINK

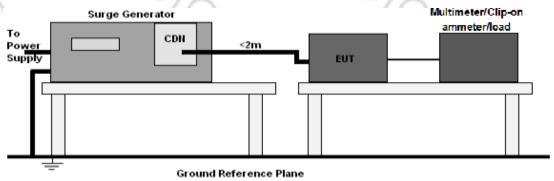
_								
	Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform Criteria	Test Result	Judgment
				Front				
	80~6000	H/V	3 V/m (rms) AM	Rear	CT,CR	A	A	PASS
		, .	Modulated 1000Hz, 80%	Left	0.,,e.,		, ,	.,,,,,
				Right				

Note:

- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) N/A denotes test is not applicable in this test report.
- 3) There was no change operated with initial operating during the test.
- 4) There was not any unintentional transmission in standby mode

13. ELECTRICAL FAST TRANSIENTS/BURST (EFT)

13.1 Test Specification


Test Port : input AC/DC power port

Impulse Frequency: 5 kHzImpulse Wave-shape: 5/50 nsBurst Duration: 15 msBurst Period: 300 ms

Test Duration : 2 minutes per polarity

13.2 Block Diagram of EUT Test Setup

For input AC power port:

13.3 Test Procedure

- a. The Product and support units were located on a non-conductive table above ground reference plane.
- b. A 0.5m-long power cord was attached to Product during the test.

13.4 Test Results

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 KPa	Test Mode :	WIFI LINK

Coup	ling Line			Tes	st leve	el (K\	/)I			Obser	Perform	Test	Judg
Coup	iiiig Liiie	0	.5	,	1	2	2	4		vation	Criteria	Result	ment
		+	-	+	-	+	-	+	•				
1	L	Α	Α	Α	Α					0.		Α 🕢	PASS
-7-	N	Α	Α	Α	Α	2			8	(-1)		Α	PASS
. (L+N	Α	Α	Α	Α					. (1	Α	PASS
AC	PE												PASS
Line	L+PE									CT,CR	В		PASS
	N+PE									C1,CK	Ь		PASS
	L+N+P E					8					80	0	PASS
DC	CLine	7					-	7	Ų.			10	
Sigr	nal Line											Ú	

Note:

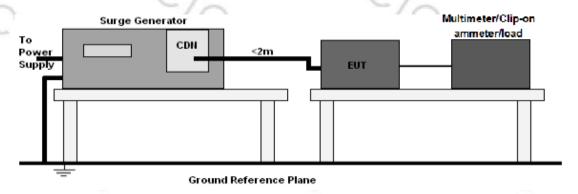
- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) N/A denotes test is not applicable in this test report.
- 3) There was not any unintentional transmission in standby mode

14. SURGES IMMUNITY TEST

14.1 Test Specification

Test Port : input AC/DC power port

Wave-Shape : Open Circuit Voltage - 1.2 / 50 us


Short Circuit Current - 8 / 20 us

Pulse Repetition Rate : 1 pulse / min.

Phase Angle : $0^{\circ} / 90^{\circ} / 180^{\circ} / 270^{\circ}$

Test Events : 5 pulses (positive & negative) for each polarity

14.2 Block Diagram of EUT Test Setup

14.3 Test Procedure

- a. The surge is to be applied to the Product power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave.
- b. The power cord between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter).

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC2008001665-2E

14.4 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Test Mode :	WIFI LINK/PING IP

	Davialia a I	in a				st lever		Observa	Perform	Judg			
	Coupling Line			.5		1		2		ļ.	tion	Criteria	ment
			+	-	+	-	+ -		+	-			
		0°	Α	Α	Α	Α							
	L-N	90°	Α	Α	Α	Α							PASS
	L-IN	180°	Α	Α	Α	Α			^				PASS
0.		270°	Α	Α	Α	Α			01	1		<	30
-//		0°		-/						-/			-/
AC	DE	90°		100	,					1	(C)		D400
Line	L-PE	180°											PASS
		270°									CT,CR	Α	
		0°											
	N-PE	90°				^					^		PASS
	175	180°			- 6	00	1				Or	٦.	PASS
	270°						-//					10	
	DC Line											. C.	
	Signal Line												

Note:

- 1) Polarity and Numbers of Impulses: 5 Pst / Ngt at each tested mode
- 2) N/A denotes test is not applicable in this Test Report
- 3) There was not any unintentional transmission in standby mode

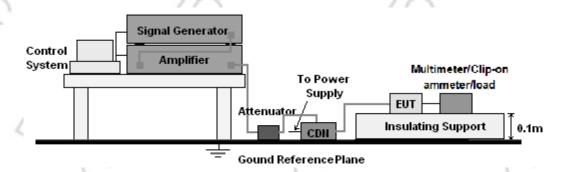
15. CONTINUOUS INDUCED RF DISTURBANCES (CS)

15.1 Test Specification

Test Port : input DC. power port

analogue/digital data port

Report No.: BCTC2008001665-2E


Step Size : 1%

Modulation : 1kHz, 80% AM

Dwell Time : 1 second

15.2 Block Diagram of EUT Test Setup

For input AC power port:

15.3 Test Procedure

For input ACpower port:

- a. The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- b. The frequency range is swept from 150 kHz to 10MHz, 10MHz to 30MHz, 30MHz to 80MHz with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

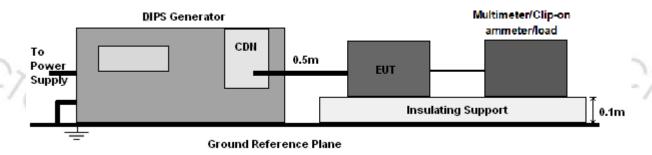
15.4 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Test Mode :	WIFI LINK/PING IP

Test Ports (Mode)	Freq. Range (MHz)	Field Strength Azimuth	Observation	Perform Criteria	Test Result	Judgment
Input/ Output AC. Power Port	0.15-80	3 V/m (rms) AM Modulated 1000Hz, 80%	CT,CR	А	А	PASS
Input/ Output DC. Power Port	0.15-80		N/A	N/A	N/A	N/A
Signal Line	0.15-80		N/A	N/A	N/A	N/A

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Report No.: BCTC2008001665-2E


16. VOLTAGE DIPS AND INTERRUPTIONS (DIPS)

16.1 Test Specification

Test Port: input AC/DC power port

Phase Angle : 0°, 180° Test cycle : 3 times

16.2 Block Diagram of EUT Test Setup

16.3 Test Procedure

- a. The Product and support units were located on a non-conductive table above ground floor.
- b. Set the parameter of tests and then perform the test software of test simulator.
- c. Conditions changes to occur at 0 degree crossover point of the voltage waveform.

16.4 Test Result

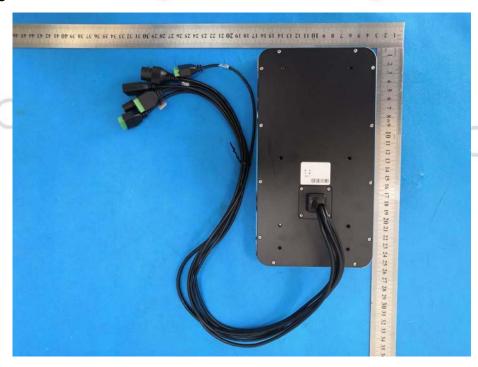
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Test Mode :	WIFI LINK/PING IP

		7/// 1			
Voltage Reduction	Duration (ms)	Observation	Perform Criteria	Test Result	Judgment
Voltage dip 0%	10	TT, TR	В	Α	PASS
Voltage dip 0%	20	TT, TR	В	В	PASS
Voltage dip 70%	500	TT, TR	В	В	PASS
Voltage interruptions	5000	TT, TR	c	В	PASS

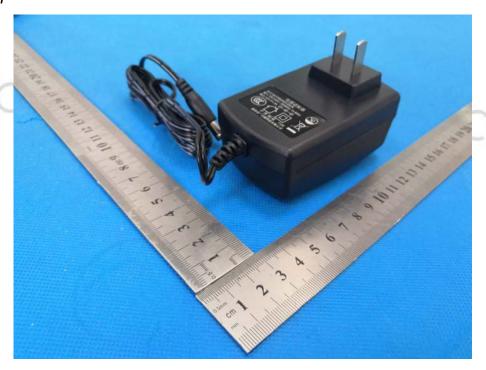
Note:

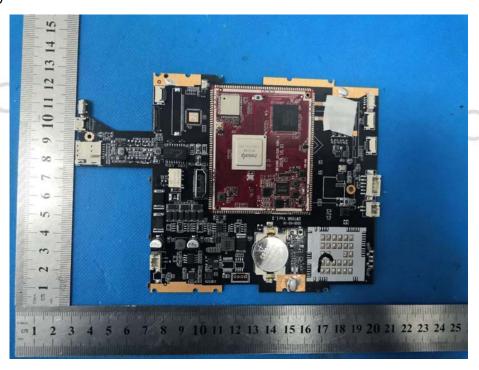
1) There was not any unintentional transmission in standby mode

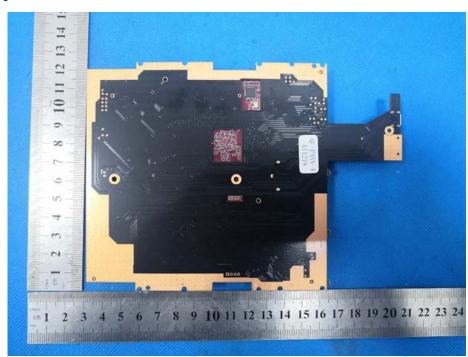
е


17. EUT PHOTOGRAPHS

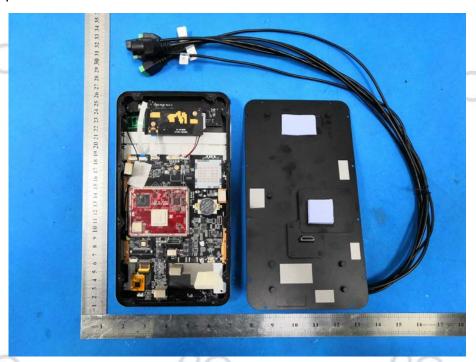
EUT Photo 1



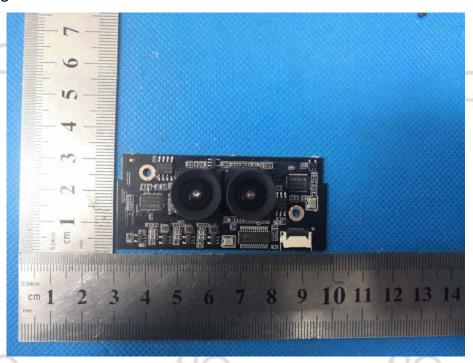


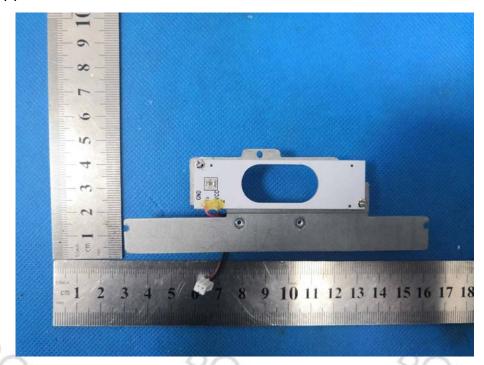


80



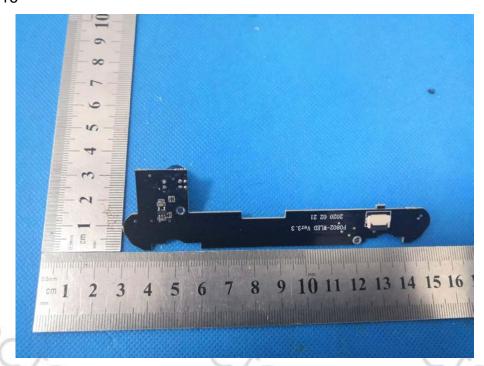
EUT Photo 9



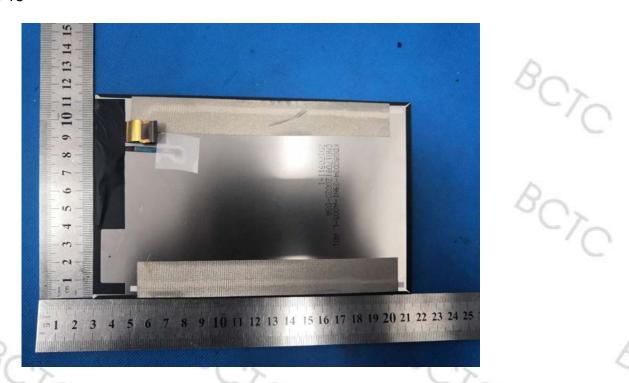


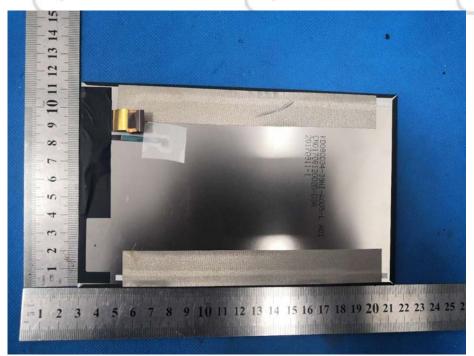
0C/C

EUT Photo 13



3C/C


EUT Photo 15



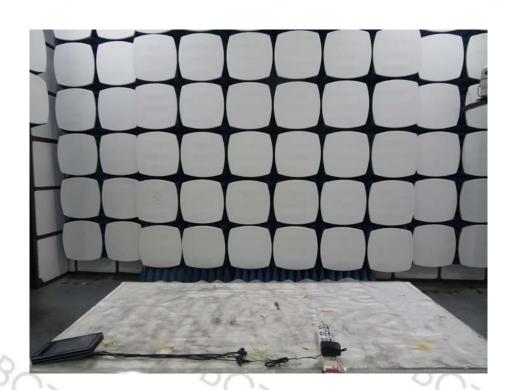
10/2 80/2

EUT Photo 19

18. EUT TEST SETUP PHOTOGRAPHS

Conducted emissions

Radiated emissions



H/F

RS

ESD

EFT/DIPS/SURGE

**** END OF REPORT ***